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The rezoning phase of the ALE method models the advection terms in the Navier-Stokes 
equations. Consequently, this method suffers from all the numerical difficulties associated with 
these terms, except when it is used for pure Lagrangian calculations. In particular, the use of 
any of the differencing options presently available in the CONCHAS-SPRAY computer 
program other than pure donor cell can create artificial oscillations in the solution through 
the dispersive truncation errors. This paper describes a flus-limiting procedure that suppresses 
these oscillations by locally adding enough donor-cell differencing to prevent nonphysical 
growth of local maxima and minima. Numerical solutions from CONCHAS-SPRAY illustrate 
ihe effectiveness of this algorithm. rm I987 Academic Press. Inc 

I. INTRODUCTION 

This paper describes a convective flux limiter that improves the accuracy and 
robustness of non-Lagrangian computational fluid dynamics methods, especially 
the arbitrary Lagrangian-Eulerian (ALE) technique (for example, [ 1, 2] and 
references therein), whose roots go back at least as far as the work of Trulio and 
Trigger 131. The ALE technique splits each computational time step into a 
Lagrangian phase and an optional rezoning phase which models advection as the 
grid is moved in an arbitrary fashion with respect to the fluid. Lagrangian and 
Eulerian calculations are two special cases in ALE: omission of the rezoning phase 
results in a Lagrangian calculation, and moving the grid back to its original 
position results in an Eulerian calculation. 

Non-Lagrangian fluid dynamics solutions can suffer from two kinds of truncation 
errors: diffusive and dispersive. The former artificially smear out a solution, ca.using 
a loss of accuracy. Some diffusion is often tolerated, however because diffusive 
schemes also tend to be stable. Donor-cell, or upwind, differencing is an example of 
a highly diffusive scheme. Dispersive errors appear as oscillations in the solution 
with a wavelength of several cells, and they tend to be worst in low-diffusion 
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calculations containing steep gradients, such as interpolated donor cell simulations 
of shock waves or deflagrations. These errors, too, can cause an unacceptable loss 
of accuracy. A number of techniques have been developed for reducing these errors, 
and we now briefly discuss some of these techniques to motivate the development of 
the new flux limiter. 

In principle these errors may be reduced by using a Lagrangian technique. 
However, this is not possible for most problems of practical interest. Even in one 
dimension, cells can become so compressed or stretched that accuracy is lost. In 
two or three dimensions, vertical motions tangle the mesh within a short time. This 
difficulty has been overcome by Horak et al. [4]. who run in the Lagrangian mode 
until the mesh becomes somwhat distorted. Then they introduce a large number of 
marker particles which are used in a simple counting procedure to map the physical 
variables from the old distorted mesh to a new regular mesh while conserving mass, 
momentum, and energy. If it were used every time step, this procedure would be 
equivalent to donor cell differencing. However, it is used typically every 50 or 100 
time steps, so the calculation is almost Lagrangian. One disadvantage of this techni- 
que is the “graininess” introduced into the solution by the finite number of par- 
ticles, which can be overcome only by using a very large number of particles, which 
in turn requires large computational resources. A second disadvantage is that the 
method as presently implemented requires the new mesh to consist only of 
rectangular cells. Otherwise, the method becomes more complex and expensive. 
Promising continuum versions of this approach have been developed [S, 61, 
however. 

Several other approaches have been tried to improve the accuracy of non- 
Lagrangian algorithms. Some codes allow the user to select a mixture of 
differencing techniques. For example, the CONCHAS-SPRAY ALE program [ 1 ] 
allows an arbitrary mixture of centered, donor cell, and interpolated donor cell 
differencing. The fraction of each can be adjusted on a problem-by-problem basis to 
obtain optimal accuracy within the constraint that these fractions are constant in 
space and time. We try to run with pure interpolated donor cell whenever possible 
because it is second-order accurate in space and time on a uniform mesh. In many 
cases dispersion errors require the addition of some donor cell to reduce dispersive 
oscillations to an acceptable level. This approach is simple and more effective than, 
say, pure donor cell, but it often introduces more diffusion in large parts of the 
mesh than is actually needed or desired. 

A more sophisticated approach was developed by Rivard et al. [7] (see also 
[S, 91). Called the “truncation error cancellation” technique, the algorithm is based 
on the use of a weakly unstable scheme, such as centered differencing, with just 
enough diffusion added locally to provide stability by cancelling the lowest order 
truncation errors with negative diffusivities. The local diffusion coefficient is deter- 
mined from the Taylor series expansion of the difference equations, keeping only 
the lowest order diffusional truncation errors. In regions where the errors provide a 
positive diffusivity, no diffusion is added. In regions where the numerical diffusivity 
is negative (thereby causing instability), it is multiplied by -2 and added to the 
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physical diffusivity. This procedure avoids the global diffusiveness of, for example, 
donor cell, but it is tedious to implement and sometimes produces significant 
dispersive errors. 

Another approach is the “flux-corrected transport” (FCT) algorithm (for exam- 
ple, [lo] and references therein). The philosophy behind the original formulation is 
in a sense opposite that of the truncation error cancellation algorithm: begin with a 
diffusive algorithm and then use an antidiffusion stage to remove locally the 
artificial smoothing without introducing spurious extrema. The original version 
works well on some one-dimensional test problems with piecewise constant 
solutions, but is subject to problems with “clipping” and “terracing” errors, 
especially in two and three dimensions. Van Albada er al. [ 1 l] show a simple one- 
dimensional example where the original FCT scheme fails completely. Zalesaks 
newer version [lo] seems to mitigate some of these difficulties, and it is now 
written in the form of a spatially and temporally dependent mixture of a high order 
accurate scheme and a low order scheme. 

Chapman [ 121 has developed a somewhat different difference method, which he 
calls the “FRAM filter.” It is based on the use of a high order scheme everywhere 
except in regions where dispersion errors drive extrema to unphysical values as 
derived from simple Lagrangian estimates. In those regions he uses a diffusive dif- 
fcrence method such as donor cell (although his difference equations are rearranged 
so the fluxes have the form of a high order convective flux plus a diffusive flux). He 
uses one difference method or the other in any given cell, not a mixture. 

The algorithm we present here makes use of some of the features of the above 
techniques, especially FRAM. It is especially well suited for methods such as ALE 
where each cycle is split into a Lagrangian time step followed by a rezonnng step. 
We begin by using interpolated donor cell or some similar method as the basic high 
order, low diffusion method. In those cells where more diffusion is needed to con- 
trol the growth of extrema, some fraction of the fluxes are calculated with donor 
cell differencing. Those cells are identified and the donor cell fraction calculated by 
comparing the tentative high order solution with the Lagrangian solution from the 
first phase of the time step. The details of this “flux limiting on extrema” (FLOE) 
procedure are given in the next section. Section III shows two numerical examples 
and compares them with solutions obtained by other methods Section IV contains 
a summary and conclusions. 

11. THE FLOE ALGORITHM 

The FLOE algorithm is quite general in its applicability. It can be incorporated 
into most existing programs in a straightforward manner. For Eulerian codes, the 
required Lagrangian solutions may be obtained in the manner described by Chap- 
man [2]~ For some methods, it is possible to simply postpone calculating the 
advection terms until the end of a time step (in effect performing a Lagrangian tim’e 
step followed by a rezone step). In particular, the ALE method is already in this 
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form, and FLOE is easily added to it. As FLOE was first tested in the CONCHAS- 
SPRAY ALE program [l], the methodology of this program will be used as a 
concrete example to illustrate the method. 

The CONCHAS-SPRAY hydrodynamics program is a recent implementation of 
ALE that was written primarily to produce numerical solutions of the complete 
multicomponent Navier-Stokes equations for the conditions found in internal com- 
bustion engines, although it is not restricted to those applications. All terms are 
retained in the governing equations, and these partial differential equations are 
approximated by partially implicit linite-difference equations. The velocities are 
defined at the vertices of the arbitrary quadrilateral cells, and all other quantities 
are defined at cell centers. 

The FLOE procedure consists of several distinct steps. The first step is to make a 
tentative calculation of the transport phase using the selected high order scheme. In 
CONCHAS-SPRAY, this is a user-specified mixture of centered, donor cell, and 
interpolated donor cell differencing. For example, the original program transports 
specific internal energy I by 

(1) 
i=~ 1 i= I 

where M, is the mass of cell 0, and p is the density. The L superscripts denote 
quantities from the Lagrangian phase, the subscripts on all quantities except the Sj 
refer to the cell center numbers illustrated in Fig. 1, and the n + 1 superscript 
denotes an advanced time quantity. Analogous equations apply to the other cell- 
centered quantities. 

The weighting factors Sj are determined by the finite difference method used. In 
CONCHAS-SPRAY, each weighting factor Si is associated with a particular cell 
center and cell face, as illustrated in Fig. 1. For example, SI is the weight for p,$Z,L 

FIG. 1. Schematic drawing of a mesh cell and its neighbors. This diagram illustrates our numbering 
scheme and shows where the Sj weighting factors are defined. 
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on the right face of cell 0. We must define several functions needed in the evaluation 
of the Sj. During the rezoning phase, the movement of the vertices from their 
positions at the end of the Lagrangian phase to their specified final positions causes 
each cell face to move through the volume of space bounded by the Lagrangian and 
final cell faces and by the two lines connecting the Lagrangian and final positions of 

each of the two cell face endpoints. Let F, be one half of the volume swept out by 
the right face of cell 0 during the rezoning. The sign of each of these volumes is 
determined by the direction the cell face moves. For example, FR is positive if the 
cell face moves left during the rezone, and it is negative if it moves to the right. Let 
FL be the same function applied to the left face of cell 0. Similarly, FT is one half the 
volume swept out by the top face of ceil 0, and F, is the same function applied to 
the bottom face. For each of these four quantities, we define an additional function, 
A y, where X is B, T, L. or R. For example, 

where c’, is the volume of cell i (i = 0 or 1 ), r is the donor cell fraction, and /I? is the 
interpolated donor cell fraction. The fraction of centered differencing is ( 1 - cx - 17). 
This same formula is applied to the other three faces by replacing R by B, T, or E. 
Then the weighting factors are 

S, = F,(l -A,), 

S:=FR(l+i4R), 

S,=F,(l-A,), 

Sq= FJl +A,), 

S5 = -F,(l + A,), 

S6 = -F,( 1 - 4,), 

S,= -F,(l +A,), 

(3) 

and 

S,= -FB(l-A,). 

Please note that FLOE may be based on a different set of difference methods 
simply by redefining the S, as required. 

Equations (l)-(3) are used to compute a provisional value of the cell internal 
energy, 

For runs in which FLOE is not desired, the provisional values are accepted as the 
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final values, and this completes the rezoning phase. In general, FLOE will be 
desired, and it will be necessary to perform the flux limiting step. 

The next step is to compare the provisional solution to local limits and then 
calculate a new value of c( for each cell in which the provisional solution falls out- 
side of the limits. Selection of the limits is not a unique process, and even simple 
prescriptions may be used to good advantage. We can merely require certain quan- 
tities to be positive. For example, CONCHAS-SPRAY contains the Robin Hood 
procedure, which is an ad hoc method of stealing mass and energy from neigh- 
boring “rich” cells to maintain positivity of species densities and internal energy in 
cells having a negative value for one or more of those quantities. The Robin Hood 
algorithm may be approximated by using pure donor cell in those cells in which the 
provisional value of internal energy or any species density is negative, and using the 
user-specified values of c1 and fi in all other cells. This procedure will introduce 
somewhat more diffusion than Robin Hood, and it will not prevent dispersive 
oscillations altogether, but it will limit their amplitude to the extent that energy and 
species densities remain positive. 

We also tried a more sophisticated prescription that is based upon the obser- 
vation that advection by the rezoning algorithm should not enhance a local 
extremum of the Lagrangian solution. Therefore, reasonable choices for the limits 
are the minimum and maximum values of the Lagrangian quantities in the cells 
used by the finite difference advection operator. For the internal energy. this choice 
would be 

and 

Imi, = maxlO, 0mm4 (zf ) j. 
. . (6) 

Similar choices would be made for all other variables. Once the choice of limits has 
been made, the provisional solution is checked to see if it falls within the limits. If it 
does, no further action on the current cell is taken by FLOE. If one or more limits 
are violated, we set c( = 1 and p= 0 in that cell. This procedure imposes the 
constraint that a + fi < 1. This version of FLOE is very similar to FRAM, and we 
will refer to it as “FRAM” hereinafter. 

Another, still more sophisticated, version was tried. Hereinafter the label FLOE 
will refer to this version only. In cells where one or more limits are violated by the 
provisional solution, the limiting values become the new desired values of the 
solution, denoted by an asterisk. That is, Z* is either Zmin or Z,,,. The next step is to 
modify the local values of LX and p to obtain the new limited value of the solution. 
We begin the derivation of the prescription for a by algebraically eliminating the S, 
and the AX from Eq. (4) with Eqs. (2) and (3) to obtain 
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(7) 

where G,=F,, Gr=FT, G3= -FL, and G, = -F,. A prime denotes the 
provisional solution. We obtain a new value of c( by setting j3 to zero, replacing 
(M,I,)’ in Eq. (7) by the desired value &I;+’ * I . and solving for the new value of 
the donor cell fraction. c(*: 

If the sum on the left-hand side is zero, set cx* = 1. Otherwise, use Eq. (8) to 
calculate a* for the internal energy. Equations analogous to Eq. (8) must also be 
used to calculate an CI* for each cell-centered variable that violates its limits, and 
the maximum value of c(* so obtained is used for all quantities in that cell. This 
value of x* may be multiplied by a safety factor slightly greater than unity if 
desired, although we have not found it necessary. Please note that in the program 
we transport the species densities first so we can always use the latest possible 
estimates of M;;+ r for transporting other variables. 

The final value of c(*, including any possible safety factor, must be restricted to 
certain limits. It must never exceed unity, and it must never be so small that it 
produces less diffusion than the original choices of a and 8. In our current 
implementation of FLOE, we use the limits 

Once u* has been computed for every cell in the mesh, a second sweep of the 
mesh calculates the Sj for the final fluxing. The value of LX* used to update the A,- 
on each cell face is the mximum value of c(* in the two cells on either side of the 
face. We set p* = 1 -II* for this face. and then Eq. (1) is used to find the final 
solution. Although only the cell-centered quantities are presently treated with 
FLOE in CONCHAS-SPRAY, flux limiting should also be added to the velocity 
fluxing, which is vertex-centered. 

Please note that FLOE is not strictly monotonic. This can be seen heuristically 
by noting that Eq. (8) implicitly assumes that the same a* will be applied to all four 
cell faces during the final advection calculation, which will not always be the case 
Imposition of a strict monotonicity constraint would require solution of an elliptic 
problem to properly account for the coupling of neighboring cells. However, our 
goal is a simple, efficient algorithm that limits the undesirable growth of extrema 
while reducing the residual numerical diffusion as much as possible. 
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III. NUMERICAL EXAMPLES 

In this section we present two examples of applications of FLOE. The first 
problem is a simple one-dimensional shock tube. The second is numerical 
simulation of homogeneous propane combustion in an experimental engine. These 
engine simulations are a subset of the calculations undertaken to compare the 
calculations to some experimental pressure histories. These examples show why it is 
desirable to employ a scheme such as FLOE, and they illustrate its effect upon the 
solution. 

The first problem is a simple shock tube with a five-to-one initial jump in the 
pressure and density 45 cm from the left end of the tube. The gas has y = 1.4 and a 
mean molecular weight of 28.5. The initial temperature is 340 K. The computational 
cell size is 0.5 cm. 

Figure 2 shows the density as a function of position at 0.75 ms. The dotted line 
shows the initial condition, and solution A is the analytical solution. Solution B 
through F are numerical solutions that have been shifted vertically by successive 
increments of 0.1 for clarity. The shock is the discontinuity at the right, and the 
contact surface is the discontinuity near the middle of the plot. The region of nearly 
linear variation is a rarefaction wave moving to the left. 

The numerical solutions were computed with CI = 0.1, p = 0.75, 1’ = 50 cm’/s, and 
an artificial viscous pressure given by 

q(x, t) = -0.05 p6x2(V. u) min(O, V . u) (10) 

unless otherwise noted. These parameters result in relatively weak numerical 

FIG. 2. Density as a function of position at I = 0.75 ms in the shock tube problem. The dotted line is 
the initial condition. Solution A is the analytical solution. Solutions B through F are numerical solutions 
that have been shifted vertically by successive increments of 0.1 for clarity. Solution B is a Lagrangian 
solution, solution C is the FLOE solution, solution D is the base case ((x =O.l, /I=O.75, and no flux 
limiting), solution E is a “FRAM” solution, and solution F is a donor cell solution (n = 1.0). 



CONVECTIVE FLUX LIMITER 357 

diffusion, but it is adequate for this weak shock (for strong shocks, it might be 
necessary to use nearly pure donor cell and to increase the leading coefficient of 
Eq. (10) to 0.25 or more before accurate jump conditions are obtained without 
FLOE). 

Curve B is a Lagrangian solution, and presumably has little numerical diffusion. 
However, discretization errors must necessarily round off the sharp corners of the 
rarefaction wave as these points move relative to the gas and, hence, relative to the 
grid. The artificial viscous pressure plays no role in the rarefaction as 4 is zero in 
regions of expansion. The value of v is likewise too small to have an effect. 

Curve C, obtained with FLOE, shows only small oscillations at the shock and 
contact surface. Because FLOE does not rigorously obey a monotonicity constraint 
and because the momentum equations do not include FLOE: those oscillations 
have not been completely suppressed. Curve D is the basic Eulerian calculation 
with no atempt at flux limiting. Dispersively-driven oscillations severely degrade 
accuracy behind the contact surface. “FRAM” produced curve E, and the 
oscillations are completely eliminated. Pure donor-cell differencing (u = I ) also 
eliminates the oscillations: but there is also significant smearing of the contact 
surface. Interestingly, all calculations produced approximately the same degree of 
sharpness in the shock. At 0.75 ms, both FLOE and “FRAM” confine their activity 
to the region between 46 and 84 cm. “FRAM” is active in IO cells and FLOE in 18. 
Seven of the FLOE a*‘s are greater than 0.5, with a maximum value of 0.98. Most 
of the rest are near 0.26. 

In some ways, the shock tube is a pathological test problem. Except for the 
rarefaction (which is a segment of a polynomial well approximated by a straight 
line)? the solution is piecewise constant. All but the worst numerical methods will 
model a straight line accurately. On the other hand, finite differences tend to have 
difficulties at large gradients and curvatures. The four points separating the five 
linear or nearly linear segments have infinite high-order derivatives. Thus, even if 
one works very hard to do a reasonable job of modeling the solution near the dis- 
continuities, there is no guarantee that an accurate solution away from the discon- 
tinuities means the method is accurate or robust for other classes of problems. 

In the second example, the engine is the Sandia National Laboratories’ 
experimental DISC engine used with homogeneous propane-air mixtures and an 
unshrouded valve (to prevent swirl). It has a right circular cylindrical combustion 
chamber with a 7.65 cm bore, a i.8 cm clearance height at top dead center (XX). 
and a compression ratio of 5.5. The present results are limited to 1203 r-pm and 
stoichiometric mixtures. The spark plug was loccated at the center of the cyhnder 
head. A more complete description of the engine is given by Smith [13], 

The computer program is nearly the same as that reported by Cloutman e: aI. 
[I ] except that the turbulent Schmidt and Prandtl numbers were decreased to + 
and the eddy diffusivity is calculated from a subgrid scale (SGs) turbulence kinetic 
energy density which is in turn a numerical solution of a transport equation [l4]. 
The solution algorithm for this transport equation included FLOE. We note that an 
principle, SGS is valid only in three dimensions. However, its use in these 
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exploratory two-dimensional engine simulations produces accuracy suficient for 
our present purpose of illustrating the use of FLOE. 

Figure 3 shows pressure as a function of crank angle for three different flux 
limiting options plus cycle-averaged experimental data. The dot-dash line represents 
the /?= 1 solution with no flux limiting. The dashed line is the Robin Hood 
solution. The solid line represents the FLOE solution using the reaction rate and 
turbulence parameters listed above. The mesh is 30 by 15 cells at top dead center 
(19 = 360”). The cells are approximately 1.27 mm on each side at all times, with rows 
of cells added or deleted as necessary to maintain this resolution as the piston 
moves. The cells remain rectangular but change axial size even on cycles when the 
number of rows is not changed, resulting in an example of a non-Lagrangian, non- 
Eulerian calculation. Runs with 3 as many cells in each direction give essentially the 
same results. These axisymmetric solutions are ignited at the experimental ignition 
time, 10” before top dead center, by dumping 40 mJ of heat into the upper leftmost 
cell over a period of 50 ps. This is approximately the physical amount of energy dis- 
charged through the spark gap. The cell is a disk 2.54 mm in diameter and 1.27 mm 
thick, which is nearly the actual spark plug gap volume, and it produces a realistic 
temperature rise. The rate of pressure rise is very small at first since the flame is 
small. The agreement with the cycle-averaged experimental results (the dotted line 
in Fig. 3) can be made reasonable in the two non-FLOE cases until approximately 
half of the fuel is burned. The experimental curve then shows a point of inflection, 
and the pressurization rate decreases thereafter. The calculated pressurization rate 
keeps increasing until the fuel is consumed. The SGS calculation simulates an 
individual engine cycle, not a cycle average. Examination of several individual 
experimental pressure traces shows that the pressure peaks are indeed somewhat 
sharper than the cycle average, but not enough to bring the calculations into 

25 - 
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FIG. 3. Pressure versus crank angle from ignition through the end of combustion. The solid curve is 
the FLOE result, the dashed curve is from interpolated donor cell with no smoothing, the dot-dash 
curve is the Robin Hood result, and the dotted curve is the cycle-averaged experimental result. 
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agreement with experiment. Except for the top third or so of the pressure peak, the 
calculation agrees with the measurements to within the cyclic variation. 
Exploratory calculations with an improved turbulent reaction rate model [l5j 
show a reduced discrepancy at the pressure peak. 

The flame speed in the FLOE solution is significantly faster than in the non- 
FLOE solutions. Unfortunately, this effect is caused by the inextricably combined 
numerical and physical effects that determin e the numerical flame speed. For a 
laminar flame, the flame speed is proportional to the square root of the product of 
the thermal diffusivity and the reaction rate. Our model treats turbulent flames as 
thickened laminar flames, and this scaling law holds approximately. However, our 
computational zones are larger than the physical flame thickness, so numerical 
effects (including Eulerian diffusion) can strongly affect the calculated flame speed. 
Indeed, the chemistry parameters were chosen by forcing the pressure peak to occur 
at nearly the correct time for a fixed set of turbulence parameters in the pure fi = I 
case. Robin Hood adds a little extra numerical diffusion, so the flame is a little bit 
faster. FLOE adds even more diffusion, and the flame is faster yet. By holding the 
turbulence and chemistry parameters fixed, we can use the pressure-time histories to 
provide a rough comparison of the amounts of numerical diffusion from the various 
faux limiting algorithms. 

Figure 4 also shows pressure histories for pure donor cell (dashed curve) and 
“FRAM” (dot-dashed line) runs. Since the donor cell numerical diffusivity can be 
several times the SGS viscosity, the flame speed is dramatically increased. It is 
possible to reduce the reaction rate to produce the correct flame speed, but there is 
no point to doing so because the effects of the SGS turbulence model are swamped 
by the numerical diffusivity. Therefore, donor cell differencing is unacceptable. 
‘“FRAM” concentrates donor cell differencing along the flame front. This procedure 
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FIG. 4. Pressure cersus crank angle from ignition through the end of combustion. The solid cwve is 
<he FLOE resu!t, the dashed curve is the donor cell result, the dot-dash curve is the “FRAM” resu!t. and 
the dotted curve is the cycle-averaged experimental result. 
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FIG. 5. Contours ( 

i 

1 
If fuel mass fraction 5.8O before top dead center. The minimum and maximum 

values are 1.08 x IO-l2 and 4.38 x lo-‘, respectively. The L and H contour values are 4.37 x IO- 3 and 
3.93 x 10m2, respectively. This solution is typical of those variables that are essentially step functions with 
the step at the flame front. 

introduces less difussion than pure donor cell (although it is still significant) since 
the flame speed lies between the donor cell and FLOE flame speeds. Because the 
high diffusion rate is now confined to the region of the flame where the turbulence 
model is most unreliable, it is not clear that “FRAM” should be dismissed on 
grounds of producing too much diffusion. 

Figure 5 shows contours of fuel mass fraction 5.8” before top dead center when 
the mass of fuel has been reduced from 14.45 to 14.26 mg. The solution is essentially 
a step function with the step at the flame front. Figure 6 shows mass fraction con- 
tours of CO, which shows the species is concentrated in the upper left corner, 
decreasing smoothly in abundance out to the flame front. There is a jump in the 
CO concentration at the flame front, but it is less severe than for the fuel. All 
species mass fraction distributions are either the step function typified by the fuel in 
Fig. 5 or the smoother distribution typified by CO. 

Table I illustrates the phenomenon that prompted us to investigate flux limiters: 
the minimum fuel mass fraction is negative for the unmodified interpolated donor 
cell (/s = 1) solution. This is caused by a small undershoot near the flame front due 

FIG. 6. Contours of CO mass fraction 5.8” before top dead center. The minimum and maximum 
values are 4.09 x 10e5’ and 5.16 x 10-j, respectively. The L and H contour values are 5.16 x 1O-4 and 
4.64 x 10m3, respectively. This solution is typical of those species with a high concentration at the point 
of ignition and a gradually decreasing abundance as the flame front is approached. 
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TABLE I 

Minimum and Maximum C3H8 and OH Mass Fractions 
with 14.37 mg of Fuel Remaining 

C,Hs OH 

A. b = 1.0 

B. “FRAM” 

C. Donor Cell 

D. Robin Hood 

E. FLOE 

- 4.59E -- 04 
4.37E -02 

3.69E-09 
4.37E-02 

1.73E -09 
4.37E -02 

8.80E - 11 
4.37E -02 

1.54E-09 
4.37E -02 

-4.41E-07 
1.02E-03 

3.3!E-72 
1.00-03 

1.12E-63 
9.38E -04 

O.OOE + 00 
9.77E -04 

1.62E -72 
9.86E-04 

to dispersive truncation errors. While tiny negative numbers can be tolerated and 
treated as zeroes, the magnitude of this minimum value is fully one percent of the 
maximum value. While this situation is probably not disastrous, it is certainly not 
desirable. 

The remaining entries in Table I show the effects of the various techniques for 
controlling dispersive oscillations. The table illustrates two important points. First, 
all four techniques help control the negative species mass fractions. Second, the 
physical minimum fuel and OH mass fractions are zero, and the calculated minima 
are at least seven orders of magnitude below the associated maxima. With the 

FIG. 7. Computational grid 5.8’ before top dead center showing those cells with FLOE active. Ceils 
with a bullet have LX* < 0.01, those with a plus have 0.01 < c(* < 0.1, those that are half shaded hare 0.1 < 
%* < 0.5, and those that are fully shaded have U* > 0.5. The contour lines are isotherms and indicate the 
flame shape and location. The L isotherm corresponds to 804 K, and the other isotherm corresponds to 
2079 K. 
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Courant number limited to 0.2 by stability considerations, donor cell differencing in 
two dimensions is guaranteed to produce positive mass fractions. This behavior is 
in fact exhibited in the donor cell species solutions at all times. “FRAM” shows the 
same behavior, although there is not a similar guarantee of positivity. The ad hoc 
Robin Hood procedure is quite successful at preventing negative mass fractions. 
The FLOE donor cell fraction CI* is typically well under unity and mostly confined 
to the neighborhood of the flame front, as we shall see in Fig. 7. This is sufficient to 
preserve positivity of fuel mass fraction in this calculation, but in a less ad hoc 
manner than Robin Hood and with less diffusion than “FRAM” and donor ceil. 
The performance of the various techniques on the OH mass fraction is the same as 
for the fuel. 

Figure 7 shows the computational grid 5.8” before top dead center with cells 
shaded where FLOE is active. Cells with a bullet have u* < 0.01, those with a plus 
have 0.01 <a* < 0.1, those that are half shaded have 0.1 < CI* < 0.5, and those that 
are fully shaded have CI* > 0.5. Isotherms are also shown to mark the flame front. 
The L isotherm corresponds to 804 K, and the other isotherm corresponds to 
2079 K. Of the 450 cells, FLOE is active in 51. Of these, three have a* ~0.01, six 
have 0.01 <c(* ~0.1, 17 have 0.1 <c(* ~0.5, and 25 have a* >0.5. Only four are 
nearly pure donor cell with CI* > 0.95. Of course, more than 51 cells use enhanced 
donor cell fractions on at least one face since the value of a used to compute the 
fluxing factors for any face is the maximum c(* on either side of the face. The 
highest diffusion rates are largely confined to the immediate post-flame gases and 
are somewhat smaller than with “FRAM.” Both “FRAM” and FLOE are definite 
improvements over pure donor cell, which puts massive amounts of diffusion even 
in places where it is not needed. 

IV. SUMMARY AND CONCLUSIONS 

The FLOE technique is a relatively simple and effective advective flux limiter that 
alleviates spurious oscillations near steep gradients. In one numerical example, the 
flame in a homogeneous charge engine, the FLOE algorithm allowed us to run with 
interpolated donor cell differencing while suppressing the small overshoots and 
undershoots near the flame that tend to produce negative densities in the trace 
species. The added numerical diffusion noticeably increased the flame speed. Unfor- 
tunately, this increase indicates that numerical diffusion is significant compared to 
the eddy viscosity in the neighborhood of the flame front. Similarly, FLOE was 
effective in reducing dispersive errors at the contact surface in the shock tube 
problem, and it was marginally effective at the shock front. 

FLOE had little impact on the running speed of CONCHAS-SPRAY. The 
original advection subroutine used approximately one percent of the computational 
time. FLOE approximately doubles the amount of arithmetic in the advection 
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routine, so it has little effect on the overall run time, even on scalar machines. On a 
Cray Research, Inc. computer, the routine vectorized naturally, offsetting the extra 
arithmetic. 
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